61 research outputs found

    Regional Carbon Dioxide and Water Vapor Exchange Over Heterogeneous Terrain

    Get PDF
    In spite of setbacks due to forest fires, eviction after a change of landowners and unanticipated need to upgrade and replace much of the instrumentation, substantial progress has been made during the past three years, resulting in major new findings. Although most of the results are in manuscript form, three papers have been published and a fourth was recently submitted. The data has been subjected to extensive quality control. Extra attention has been devoted to the influence of tilt rotation and flux-calculation method, particularly with respect to nocturnal fluxes. Previous/standard methods for calculating nocturnal fluxes with moderate and strong stability are inadequate and lead to large random fluxes errors for individual records, due partly to inadvertent inclusion of mesoscale motions that strongly contaminant the estimation of fluxes by weak turbulence. Such large errors are serious for process studies requiring carbon dioxide fluxes for individual records, but are substantially reduced when averaging fluxes over longer periods as in calculation of annual NEE budgets. We have employed a superior method for estimating fluxes in stable conditions with a variable averaging width . Mesoscale fluxes are generally unimportant except for events and are generally not systematic or predictable. Mesoscale or regional models of our region are not able to reproduce important aspects of the diurnally varying wind fiel

    On estimating the surface wind stress over the sea

    Get PDF
    Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 1533-1541, doi:10.1175/JPO-D-17-0267.1.Our study analyzes measurements primarily from two Floating Instrument Platform (FLIP) field programs and from the Air–Sea Interaction Tower (ASIT) site to examine the relationship between the wind and sea surface stress for contrasting conditions. The direct relationship of the surface momentum flux to U2 is found to be better posed than the relationship between and U, where U is the wind speed and is the friction velocity. Our datasets indicate that the stress magnitude often decreases significantly with height near the surface due to thin marine boundary layers and/or enhanced stress divergence close to the sea surface. Our study attempts to correct the surface stress estimated from traditional observational levels by using multiple observational levels near the surface and extrapolating to the surface. The effect of stability on the surface stress appears to be generally smaller than errors due to the stress divergence. Definite conclusions require more extensive measurements close to the sea surface.This work was supported by the U.S. Office of Naval Research through Award N00014-16-1-2600. We2019-01-1

    Thermal Submeso Motions in the Nocturnal Stable Boundary Layer. Part 2: Generating Mechanisms and Implications

    Get PDF
    In the stable boundary layer, thermal submesofronts (TSFs) are detected during the Shallow Cold Pool experiment in the Colorado plains, Colorado, USA in 2012. The topography induces TSFs by forming two different air layers converging on the valley-side wall while being stacked vertically above the valley bottom. The warm-air layer is mechanically generated by lee turbulence that consistently elevates near-surface temperatures, while the cold-air layer is thermodynamically driven by radiative cooling and the corresponding cold-air drainage decreases near-surface temperatures. The semi-stationary TSFs can only be detected, tracked, and investigated in detail when using fibre-optic distributed sensing (FODS), as point observations miss TSFs most of the time. Neither the occurrence of TSFs nor the characteristics of each air layer are connected to a specific wind or thermal regime. However, each air layer is characterized by a specific relationship between the wind speed and the friction velocity. Accordingly, a single threshold separating different flow regimes within the boundary layer is an oversimplification, especially during the occurrence of TSFs. No local forcings or their combination could predict the occurrence of TSFs except that they are less likely to occur during stronger near-surface or synoptic-scale flow. While classical conceptualizations and techniques of the boundary layer fail in describing the formation of TSFs, the use of spatially continuous data obtained from FODS provide new insights. Future studies need to incorporate spatially continuous data in the horizontal and vertical planes, in addition to classic sensor networks of sonic anemometry and thermohygrometers to fully characterize and describe boundary-layer phenomena

    Thermal Submesoscale Motions in the Nocturnal Stable Boundary Layer. Part 1: Detection and Mean Statistics

    Get PDF
    Submesoscale motions within the stable boundary layer were detected during the Shallow Cold Pool Experiment conducted in the Colorado plains, Colorado, U.S.A. in 2012. The submesoscale motion consisted of two air layers creating a well-defined front with a sharp temperature gradient, and further-on referred to as a thermal submesofront (TSF). The semi-stationary TSFs and their advective velocities are detected and determined by the fibre-optic distributed-sensing (FODS) technique. An objective detection algorithm utilizing FODS measurements is able to detect the TSF boundary, which enables a detailed investigation of its spatio–temporal statistics. The novel approach in data processing is to conditionally average any parameter depending on the distance between a TSF boundary and the measurement location. By doing this, a spatially-distributed feature like TSFs can be characterized by point observations and processes at the TSF boundary can be investigated. At the TSF boundary, the air layers converge, creating an updraft, strong static stability, and vigorous mixing. Further, the TSF advective velocity of TSFs is an order of magnitude lower than the mean wind speed. Despite being gentle, the topography plays an important role in TSF formation. Details on generating mechanisms and implications of TSFs on the stable boundary layer are discussed in Part 2
    • 

    corecore